Волна.

Тихий океан (общепринятое название в странах, где говорят на английском языке – Pacific Ocean) по праву можно назвать величайшим океаном нашей планеты – он занимает 49.5 % поверхности всего Мирового океана. Не случайно один из французских учёных предложил переименовать его в Великий океан. Хотя о существовании Тихого океана человечество узнало ещё в XVI веке, его поражающие воображение глубины до сих пор таят в себе множество тайн, которые ещё долго предстоит разгадывать человечеству. Без сомнения, об этом удивительном океане можно написать целую книгу. Однако в этой статье мы ограничимся тридцатью самыми важными и интересными фактами о Тихом океане.


1. Первое имя Тихого океана – это Южное море. Это название дал в 1513 году конкистадор из Испании Васко Нуньес де Бальбоа из-за того, что вышел к океану через залив, открытый к южной стороне.

2. Название «Тихий океан» закрепилось по окончанию плавания Фернана Магеллана, которому удалось в 1520 году пересечь океан от Огненной Земли до Филиппин. Поскольку в этот период (путешествие длилось три месяца и двадцать дней) погода была ясной и спокойной, и Магеллану посчастливилось ни разу не попасть в шторм, он дал океану имя «тихий». Ирония судьбы заключается в том, что в тихоокеанских водах намного чаще бывают штормы, чем в Индийском и Атлантическом океанах.

3. Географ из Франции Жан-Никола Бюаш в 1753 году предложил переименовать Тихий океан в Великий, как наибольший и глубочайший на планете. Однако инициатива Бюаша не встретила поддержки со стороны общественности и была отклонена.

4. В России до революции 1917 года в русских географических картах океан называли Тихим морем или Восточным океаном согласно традиции, ранее заложенной русскими землепроходцами.

5. Тихий океан – самый древний, обширный и глубокий на Земле. Он вмещает в себя 53 % от объёма воды, содержащейся в Мировом Океане. Его средняя глубина достигает 3984 м, а максимальная глубина – более 10 994 м. Общая площадь вместе с морями достигает 178.684 млн км2. Океан растянут примерно на 19.5 км с востока на запад и на 15.8 км с севера на юг, занимает треть от поверхности нашей планеты и омывает берега более государств. Крупнейшие из них – США и Канада, Никарагуа, Перу, Гватемала, Чили, Китай, Вьетнам, Япония, а также Россия. Такие стратегически важные города-порты, как Шанхай и Иокогама, Сан-Франциско, Лос-Анджелес, Владивосток и Находка находятся на побережье Тихого океана.


Закат.

6. Тихий океан включает в себя порядка 25 тысяч островов, что превышает суммарное число островов во всех других океанах.

7. Площадь морей, проливов и заливов Тихого океана — 31.64 млн км2, что составляет 18% от его площади.

8. В приполярных областях температура воды Тихого океана опускается до — 0,5C, а в области экватора достигает +30С. При этом воды Тихого океана были признаны наиболее тёплыми из существующих океанов.

9. Наибольшая часть суши, находящаяся в Тихом океане – это остров Новая Гвинея, являющийся самым крупным островом в мире.


10. Самая глубокая точка на поверхности планеты Земля расположена именно в Тихом океане. Это так называемая «Бездна Челленджера», находящаяся в Марианской впадине на глубине 10994 м ниже уровня моря, как показали измерения 2011 года. Для сравнения – нижняя точка этой бездны находится дальше от уровня моря, чем высочайшая в мире гора Эверест.

11. Человек всего три раза за всю мировую историю спускался в Марианскую впадину. Одним из этих людей был известный режиссёр Джеймс Кэмерон, создавший такие фильмы, как «Титаник», «Аватар» и «Терминатор».

12. На дне Тихого океана есть горы – порядка 10 тыс. пиков, большинство из которых – потухшие вулканы. Также там расположены Императорские горы, протянувшиеся на 1500 километров.

Берег.

13. В Тихом океане насчитывается 50% от биомассы всего Мирового океана. Здесь в 3-4 раза более богатый и разнообразный животный мир, чем в остальных океанах – обитает более 100 тысяч видов живых существ (в частности, рыбы-черти, морские коньки, большероты, плащеносные акулы, осьминоги, морские ежи, студенистые рыбы капли и др). Что характерно, всего 5% из обитателей океана живут на глубине более 2000 м.


14. В Тихом океане обитают некоторые древнейшие виды рыб, которых нет в иных океанах – к примеру, иордания и гильбертидия.

15. 95 % от всех существующих видов лососевых рыб обитает в тихоокеанских водах.

16. В северной части океана обитает самый большой в мире двустворчатый моллюск тридакна, вес особей которого иногда достигает 400 кг, а длина – 2 метра. Также здесь живут огромные мидии и устрицы.

17. В океане существует приблизительно 4 тыс. водорослей. Некоторые из них, а именно, бурые водоросли семейства ламинариевых, в южном полушарии иногда вырастают в длину до 180-200 метров.

18. В Тихом океане самые высокие приливы в мире – к примеру, у берегов Кореи высота волн доходит до 9 метров.

19. В Тихом океане по причине сейсмической активности иногда происходят гигантские цунами. Скорость, с которой они пересекают поверхность океана, доходит до 800 км/ч.

20. Форма океана похожа на треугольник, он сужается к северу и расширяется к югу.

21. Тихий океан пересекает условная линия перемены даты (примерно по 180 меридиану). Время по разные стороны этой линии отличается приблизительно на сутки. К примеру, если на восточной стороне линии ещё вторник, то на западной в этот момент уже среда.


22. Астероид, обнаруженный в 1882 году астрономом И. Пализа, был назван «(224) Океана» в честь Тихого океана.

23. Дно Тихого океана состоит, главным образом, из Тихоокеанской литосферной плиты, наиболее обширной на Земном шаре. Поскольку плита двигается в северо-западную сторону примерно на 6-10 см каждый год, размер океана постоянно незначительно сокращается.

Небо над водой.

24. В тихоокеанских водах расположен Большой Барьерный риф длиной в 900 километров, который является наиболее длинной грядой коралловых островов на планете Земля.

25. 328 действующих в настоящее время известных наземных вулканов из 540 существующих располагаются в пределах «Тихоокеанского огненного кольца». Именно в районе, где находится Тихий океан, случилось 90% землетрясений в мире, в том числе 80% мощнейших из них.

26. Тихий океан хранит в себе до 30-40% газовых и нефтяных запасов, содержащихся в водах Мирового океана. Именно здесь расположена почти треть разведанных месторождений нефти и газа, находящихся под водой.


27. В начале XX столетия по тихоокеанскому дну был протянут первый телеграфный кабель, длина которого составляла более 12.5 тыс. км.

28. В южных водах Тихого океана находится «кладбище» космических кораблей. Именно в этом месте размещаются выведенные из эксплуатации и затопленные космические объекты.

29. Тихий океан пересекает так называемое циркумполярное Антарктическое течение (или течение Западных Ветров), наиболее мощное в мире океаническое течение, проходящее через все существующие меридианы.

30. В 1997 году на севере Тихого океана Чарльз Мур, яхтсмен и океанолог обнаружил огромное количество мусора (порядка 100 млн тонн), которое позже было названо «Большим тихоокеанским мусорным пятном». В основе мусора лежал пластик, 80% которого по подсчётам Ч. Мура было принесено с земли, а 20% — выброшено с палуб кораблей. Приблизительная площадь этого мусорного скопления по разным оценкам достигает от 700 тыс. до 1.5 км2.

Тихий океан можно смело назвать уникальным мировым феноменом – больше нигде на всей планете Земля нет таких огромных водных массивов со столь уникальной флорой и фауной. С учётом современных экологических проблем человечеству стоит задуматься о сохранении Тихого океана и относиться к нему с большим вниманием, ведь именно от него зависят многие климатические процессы и стихийные бедствия, которые происходят в мире.


Статью проверил и отредактировал эксперт Papa Vlada.

Первоисточник статьи опубликован на сайте про Моря и воду.

Источник: zen.yandex.ru

Доклад, прочитанный в День учителя географии 2 апреля 2009 г.

 Возраст тихого океана

 

Земля во многих отношениях уникальная планета, но, пожалуй, самое удивительное на ней — наличие большого количества жидкой воды. Водяной пар и лед можно найти на других планетах, в астероидах и метеоритах, но жидкая вода есть только на Земле. Особенность жидкой фазы воды заключается в том, что она может существовать лишь в очень узком диапазоне температур — от 0 до 100 °С, и такие температурные условия сохраняются продолжительное время только на Земле. Именно присутствие жидкой воды сделало возможным возникновение и развитие жизни на Земле в ее современных формах. Самым большим хранилищем воды является Мировой океан, который, как показывают данные палеогеографии, никогда полностью не замерзал и не испарялся.

Приведем определение этого интересного географического объекта, данное в одной из последних работ известного океанолога академика А.С.


нина: «Мировой океан — непрерывно распределенная по поверхности Земли (на площади, охватывающей около 71%) и ограниченная снизу и с боков причудливой формой рельефа дна и береговой линией континентов толща соленой воды с массой 1377·106 гигатонн, имеющая среднюю глубину около 3800 метров, с многочисленными разбросанными на ее поверхности островами, и разнообразной формой жизни в ее глубинах».

После первого знакомства с океаном вполне естественно возникает желание знать, когда и как он образовался, всегда ли был таким, каким мы его знаем сегодня, и как эволюционировал на протяжении истории Земли? Вопрос тем более интересен, что историю формирования и развития материков и всей нашей планеты можно понять только в том случае, если хорошо известна история возникновения и дальнейшей эволюции Мирового океана. Следует заметить, что история океана весьма сложна, во многом еще недостаточно изучена и пока не может быть истолкована однозначно. Поэтому далее будут приведены наиболее широко распространенные, но иногда требующие дополнительных подтверждений научные представления по интересующему нас предмету.

Прежде всего, зададимся вопросом о времени появления жидкой воды, о том, как быстро это произошло после образования самой планеты.


настоящее время считается, что образование Земли началось 4,6 млрд лет назад. Согласно некоторым гипотезам, промежуточной стадией формирования планет из межзвездной пыли и газов считается образование так называемых планетезималей — твердых и крупных (до нескольких сотен километров в поперечнике) тел, последующее скопление и объединение которых становится процессом аккреции 1 уже непосредственно планеты. По геологическим меркам, Земля сформировалась очень быстро, примерно за первые сто миллионов лет своей истории достигнув 93—95% сегодняшней массы. Наиболее вероятно, что первоначально Земля не имела атмосферы и гидросферы, а ее поверхность непрерывно изменялась в результате интенсивной метеоритной бомбардировки.

Образование планеты сопровождалось сильным гравитационным сжатием и выделением столь большого количества тепла, что первые сотни миллионов лет у поверхности Земли существовал магматический океан, или расплавленная первичная астеносфера. Так как в расплаве (магме) находились вещества разные по составу и плотности, началась гравитационная дифференциация. При этом более плотные вещества (тяжелые металлы) погружались, образуя металлическое (железное) ядро планеты, а менее плотные (силикаты) всплывали, постепенно создавая мантию и литосферу. Дифференциация сопровождалась дегазацией мантийного вещест-ва, при которой легко кипящие фракции переходили в газообразное состояние и, выходя на поверхность, формировали первичную плотную и горячую атмосферу Земли.


иболее вероятно, что вначале атмосфера состояла из углекислого газа (СО2), аммиака (NH3), возможно также сернистого водорода (H2S) и хлористого водорода (HCl), но главное, в ней появился водяной пар, количество которого постепенно увеличивалось и, по некоторым оценкам, могло достигать величины порядка 1021 кг, что составляет около 70% массы современной гидросферы Земли.

Постепенное истощение источников внутреннего тепла Земли привело к остыванию и кристаллизации магмы с последующим образованием первичной твердой земной коры. Дальнейшее остывание верхних слоев планеты и понижение температуры ниже точки кипения неизбежно вызвало конденсацию водяного пара и тем самым появление жидкой фазы воды. Можно полагать, что озера первичной гидросферы на поверхности молодой планеты неоднократно испарялись и появлялись вновь, пока не установился температурный режим, в среднем повсеместно допускавший существование жидкой воды. Когда это могло произойти?

Самые древние (из известных сегодня) горные породы найдены в Западной Австралии, их возраст оценивается в 4,2—4,0 млрд лет. Большое внимание привлекли извлеченные из них зерна минерала циркона (химическая формула ZrSiO4, часто радиоактивен). Изотопный анализ древнейших цирконов показал повышенное содержание тяжелого изотопа кислорода 18О, характерное для жидкой воды. Это служит косвенным доказательством того, что эти минералы образовались в присутствии жидкой воды. В тех же западноавстралийских цирконах оказалось аномальное содержание еще некоторых изотопов, свидетельствующее о земном (не метеоритном) происхождении минералов.

Помимо косвенных получены и прямые доказательства существования жидкой воды. В горных породах возрастом 3,9—3,8 млрд лет, найденных в юго-западном районе Гренландии, обнаружены железистые кварциты водного происхождения, что позволяет предположить существование жидкой воды в этом районе на 200—300 млн лет ранее указанного времени. Таким образом, гидросфера Земли начала формироваться не позднее 4 млрд лет тому назад при постепенном остывании поверхности планеты и конденсации водяного пара первичной атмосферы. Первые, еще весьма мелководные, моря будущего Мирового океана заполняли впадины застывшего рельефа, разрастались, сливались с соседними водными бассейнами.

Полагают, что первичная земная кора, которая выплавлялась из мантии, состояла из пород, близких по своему составу к базальтам. Во всяком случае, первичная кора имела основной или ультраосновной состав, то есть была идентичной современной земной коре океанического типа. Протоконтинентальная кора начала формироваться почти в то же время, но занимала значительно меньшие площади. Ее первые острова расчленяли неглубокий первичный океан на отдельные бассейны.

Собрано большое число подтверждений существования океана в ранние геологические эпохи. Одним из первых обоснованные предположения о возрасте и эволюции Мирового океана высказал в 1901 г.австрийский геолог Эдуард Зюсс. В основе его рассуждений лежала смелая гипотеза о том, что привычное расположение материков и океанов на поверхности Земли не было незыблемым и постоянным в геологическом прошлом. По заключению Зюсса, в позднем палеозое — раннем мезозое (порядка 350 млн лет тому назад) существовал мегаконтинент Гондвана, в котором слились фрагменты Африки, Индостана, Южной Америки, Австралии и Антарктиды. Спустя четырнадцать лет немецкий геофизик Альфред Вегенер, развивая гипотезу Зюсса, предложил теорию дрейфа континентов. Он считал, что Гондвана Зюсса была частью еще более крупного суперконтинента Пангеи, окруженного сплошным кольцом океанических вод. Постепенно появлялись данные о том, что Атлантический и Индийский океаны с геологической точки зрения молоды, а Тихий океан значительно более древний. Согласно палеомагнитным данным, древние океаны шириной до 3,5 тыс. км существовали в палеозое (400—500 млн лет тому назад), а еще более широкие, до 5 тыс. км, — в раннем протерозое (1,7—2,5 млрд лет тому назад).

Реликтами земной коры океанического типа считаются офиолиты — особый комплекс интрузивных, эффузивных и осадочных пород, широкое распространение которых в том или ином районе свидетельствует о существовании древнего океана. Найдены офиолиты раннепротерозойского и даже архейского (3—4 млрд лет) возраста.

Первоначально древние океаны были мелководными, но вместе с постепенным увеличением объема жидкой воды глубины возрастали — от 150—700 мв архее до 2900 м в среднем протерозое (1,2 млрд лет). Воды Мирового океана достигли объема близкого к современному приблизительно к началу кембрийского периода, около 570 млн лет назад, а в дальнейшем пополнялись в процессе продолжавшейся дегазации мантии во время вулканиче-ских извержений (в особенности подводного вулканизма) и перераспределялись между отдельными океанами.

Итак, первые бассейны, наполненные жидкой водой, появились на Земле не позднее 4 млрд лет тому назад. С тех пор температурные условия на поверхности Земли в среднем всегда находились в пределах существования жидкой воды, иными словами, океан никогда полностью не исчезал. Это важно отметить, так как далее предстоит разрешить любопытный парадокс. Дело в том, что на дне современных океанов нигде не найдено не только осадочных пород с возрастом более 170 млн лет, но и коренные породы океанического дна оказались с геологической точки зрения удивительно «молодыми».

Несоответствие между возрастом Мирового океана, соизмеримым с возрастом Земли, и молодостью океанического дна объясняется с позиций теории новой глобальной тектоники. Согласно ее положениям, земная кора не есть единая твердая и неизменная оболочка земного шара, а представляет собой своеобразную мозаику из нескольких жестких литосферных плит площадью в десятки миллионов квадратных километров, находящихся на плаву в вязкой астеносфере и непрерывно испытывающих вполне упорядоченные горизонтальные перемещения. Объясним кажущийся временной парадокс на примере Атлантического океана.

Через центральную часть океана с севера на юг простирается срединно-океанический хребет. В осевой части хребта располагается рифтовая долина, по которой проходит граница между соседними литосферными плитами: Американской — к западу от хребта, Африканской и Евразийской — к востоку. Рифтовая долина есть зона спрединга, или раздвижения, плит. Под ней происходит поднятие расплавленного мантийного вещества, формирование из него новых участков океанической коры и их перемещение в обе стороны от хребта. Скорость раздвижения литосферных плит составляет единицы сантиметров в год. По сторонам рифтовой долины расположены самые молодые участки океанического дна. С удалением от хребта возраст донных осадков постепенно увеличивается и достигает наибольших значений в прибрежных зонах океана. Достигнув берега, океаническая часть плиты «ныряет» под нависающий край континента, происходит ее поддвиг под соседнюю плиту и погружение в мантию. Таким образом, возраст океанического дна зависит от расстояния между рифтовой зоной (осью спрединга) и областью погружения (называемой зоной субдукции), а также от скорости горизонтального перемещения плит.

Механизм, приводящий в движение литосферные плиты, объясняется следующим образом. Конвекция, возбуждаемая внутренним теплом Земли, порождает в мантии конвективные ячейки. Под зонами спрединга находятся восходящие ветви, в зонах субдукции —нисходящие, в промежутке — горизонтальные ветви конвективных ячеек. Горизонтальные размеры ячеек соответствуют расстояниям между зонами спрединга и субдукции, вертикальные составляют в современную геологическую эпоху около 400 км.

Интересно, что базальты, кристаллизующиеся из расплава в рифтовой зоне, одновременно намагничиваются в магнитном поле Земли и впоследствии сохраняют свои магнитные свойства. Это позволяет, сравнивая магнитные характеристики образца базальта с соответствующими характеристиками современного магнитного поля, определять возраст разных участков океанического дна.

Считается, что тектоника литосферных плит начала действовать не позднее 3,5—3,0 млрд лет назад, но размеры плит были меньше, а число их больше. Современные черты динамики этот механизм приобрел в начале позднего протерозоя (около одного миллиарда лет назад). Теперь можно в общих чертах проследить, как менялись очертания океанов и континентов на поверхности Земли.

Первые структуры континентов возникли около 3 млрд лет назад. На рубеже архея и протерозоя (2,5 млрд лет тому назад) горизонтальные перемещения литосферных плит привели к сближению и постепенному слиянию древних материков, что привело к формированию первого суперконтинента Пангеи, окруженного единым океаном Панталассом. Названия даны по старой научной традиции использования грече-ского языка: пан — всеобщий, гео — земля, таласс — океан. Примерно через 300—500 млн лет Пангея раздробилась на обособленные континенты, между которыми возникли океанские бассейны. В дальнейшей истории Земли подобная компактная группировка материков в единый континент возникала, существовала и разрушалась трижды, с периодичностью около 800 млн лет. Последней была палеозойско-мезозойская Пангея, существование которой первым обосновал А. Вегенер. Интересно, что компоновка каждой Пангеи была сходна с «вегенеровской». Во всяком случае, многие факты говорят о том, что в перемещении литосферных плит прослеживается определенная упорядоченность. Таким образом, сегодняшняя конфигурация материков и океанов не есть нечто застывшее навсегда. Она меняется буквально на наших глазах, только эти изменения происходят очень медленно, со скоростями в среднем 4—6 см в год.

Возраст тихого океана

Рис. 1. Реконструкция суперконтинента Пангея, около 200 млн лет назад (по Я. Голонке, 2000 г.)

 

Геологический прогноз движений литосферных плит в ближайшие примерно 50 млн лет в главных чертах выглядит следующим образом. Атлантический океан станет шире, а площадь Тихого океана сократится. Австралия продвинется на север и подойдет ближе к Евразийской плите. Азия соединится с Северной Америкой в районе Алеутских островов. Красное море раздвинется — это зародыш будущего океана, полуостров Калифорния станет островом. Океаны Земли в ходе своей эволюции проходят последовательно этапы развития от узкого моря (Красное море сегодня) до размеров современного Тихого океана. Одновременно происходят сближения и расхождения материков, изменение их числа и пространственной ориентации.

Мировой океан это, прежде всего, морская вода, привлекающая к себе пристальное внимание океанологов. Одной из важнейших характеристик вод, наполняющих Мировой океан, является соленость. В практических целях соленость принято характеризовать концентрацией раствора, которую измеряют в промилле (‰), то есть в тысячных долях, и средняя соленость морской воды составляет около 35‰.

Под соленостью понимается выраженная в граммах масса всех твердых веществ, растворенных в 1000 г морской воды, когда карбонаты превращены в окислы, бром и йод замещены эквивалентным количеством хлора, а органические вещества сожжены при 480 °С. Кратко можно сказать, что соленость морской воды есть отношение массы растворенного твердого вещества к массе раствора.

Вода является одним из лучших растворителей, поэтому на Земле невозможно найти химически чистое вещество Н2О, все природные воды в той или иной степени минерализованы. Воды первичного океана также представляли собой раствор солей, по концентрации близкий к современной солености, но солевой состав раствора был отличен от настоящего. Ювенильный раствор, поступавший на поверхность Земли при дегазации мантии, на первых порах, по-видимому, полностью выпаривался, но с понижением температуры ниже точки кипения воды стал растворяться в воде первых земных морей. Одновременно в раствор переходили легко растворимые вещества первичной земной коры. Кроме того, в воде первых морей растворялись газы, содержавшиеся в первичной атмосфере: HCl, HF, HBr, B(OH)3 и некоторые другие. Поэтому первое время существования океана его воды должны были проявлять кислую реакцию из-за присутствия в растворе сильных кислот.

В дальнейшем происходило приспособление солевого состава первичного океана к изменяющимся термическим и гидрохимическим условиям на поверхности Земли. В растворе оставались те элементы, для которых не нашлось достаточного количества сильных осадителей, например такие, как хлор и бром. Их процентное содержание в растворе почти не изменилось. Содержание других элементов, прежде всего углерода, сильно уменьшилось. Это свидетельствует о том, что в океане постоянно протекают процессы, выводящие углерод из раствора. Основная реакция этого типа — перевод углекислого газа в угольную кислоту с дальнейшим переходом в нерастворимый и потому выпадающий в осадок карбонат кальция. Этот процесс происходил всегда и протекает до сих пор. Сильные кислоты в океане архейского времени вступали в реакцию с сильными основаниями, что в результате привело к постепенной нейтрализации первично кислых вод.

Возраст тихого океана

Рис. 2. Литосферные плиты и скорости их перемещения в мм/год (по В.Е. Хаину, 2008 г.)

 

Существенные изменения в солевом составе океанских вод начались с возникновением и дальнейшим развитием жизни. С появлением биосферы начала проявляться реакция фотосинтеза, в ходе которой из морской воды выводятся, прежде всего, углерод и азот. В процессе фотосинтеза создается свободный кислород, что открыло возможность формирования современной азотно-кислородной атмосферы. В результате фотосинтеза из атмосферы почти полностью был извлечен углекислый газ, что способ-ствовало стабилизации карбонатной системы, возникновению скелетных организмов, а в дальнейшем — накоплению карбонатных осадочных толщ на дне океанов.

Эти и другие природные процессы постепенно видоизменяли солевой состав океанических вод, который стал преимущественно хлоридно-сульфатным и практически идентичным со-временному. В настоящее время морская вода представляет собой равновесный природный раствор, обладающий исключительно высокой химической инертностью, сохраняющий свой состав и концентрацию солей практически неизменными на протяжении, по меньшей мере, последней геологической эпохи.

1 Аккреция (лат. accretio приращение, увеличение) — гравитационный захват вещества и последующее его падение на космическое тело под действием гравитации, сопровождается выделением гравитационной энергии.

Следующая публикация — см. № 20

Источник: geo.1sept.ru

Особенности экономико-географического положения Тихого океана

На севере обширные пространства Тихого океана через Берингов пролив соединены с Северным Ледовитым океаном.

Граница между ними проходит по условной линии: мыс Уникын (Чукотский полуостров) — бухта Шишмарева (полуостров Сьюард). На западе Тихий океан ограничен материком Азии, на юго-западе — берегами островов Суматра, Ява, Тимор, далее — восточным побережьем Австралии и условной линией, пересекающей Бассов пролив и следующей затем вдоль берегов острова Тасмания, а южнее по гряде подводных поднятий до мыса Олден на Земле Уилкса в Антарктиде. Восточными пределами океана служат берега Северной и Южной Америки, а южнее — условная линия от острова Огненная Земля до полуострова Антарктический на одноименном материке. На крайнем Юге воды Тихого океана омывают Антарктиду. В этих пределах он занимает площадь 179,7 млн. км2, включая окраинные моря.

Океан имеет сферическую форму, особенно хорошо выраженную в северной и восточной частях. Его наибольшая протяженность по широте (порядка 10 500 миль) отмечается по параллели 10° с.ш., а наибольшая длина (около 8500 миль) приходится на меридиан 170° з.д. Столь большие расстояния между северными и южными, западными и восточными берегами — существенная природная черта этого океана.

Береговая линия океана сильно изрезана на западе, на востоке берега гористы и слабо расчленены. На севере, западе и юге океана находятся крупные моря: Берингово, Охотское, Японское, Желтое, Восточно-Китайское, Южно-Китайское, Сулавеси, Яванское, Росса, Амундсена, Беллинсгаузена и др.

Рельеф дна Тихого океана сложный и неровный. В большей части переходной зоны шельфы не имеют значительного развития. Например, у американского побережья ширина шельфа не превышает нескольких десятков километров, но в Беринговом, Восточно-Китайском, Южно-Китайском морях она достигает 700-800 км. В целом шельфы занимают около 17% всей переходной зоны. Материковые склоны крутые, часто ступенчатые, расчленены подводными каньонами. Ложе океана занимает огромное пространство. Системой крупных поднятий, хребтов и отдельных гор, широких и сравнительно невысоких валов оно разделено на большие котловины: Северо-Восточную, Северо-Западную, Восточно-Марианскую, Западно-Каролинскую, Центральную, Южную и др. Наиболее значительное Восточно-Тихоокеанское поднятие входит в мировую систему срединноокеанических хребтов. Кроме него в океане распространены крупные хребты: Гавайский, Императорские горы, Каролинский, Шатского и др. Характерная особенность рельефа дна океана — это приуроченность наибольших глубин к его периферии, где располагаются глубоководные желоба, большинство из которых сосредоточено в западной части океана — от залива Аляска до Новой Зеландии.

Обширные пространства Тихого океана охватывают все природные пояса от северного субполярного до южного полярного, чем обусловлено многообразие его климатических условий. При этом наиболее значительная по площади часть пространства океана, расположенная между 40° с. ш. и 42° ю.ш., находится в пределах экваториального, тропического и субтропического поясов. Южная окраинная часть океана климатически более сурова, чем северная. Из-за охлаждающего влияния Азиатского материка и преобладания западно-восточного переноса для умеренных и субтропических широт западной части океана характерны тайфуны, особенно частые в июне-сентябре. Северо-западной части океана свойственны муссоны.

Исключительные размеры, своеобразные очертания, крупномасштабные атмосферные процессы во многом предопределяют особенности гидрологических условий Тихого океана. Поскольку довольно значительная часть его площади находится в экваториальных и тропических широтах, а связь с Северным Ледовитым океаном весьма ограниченна, поскольку средняя температура воды на поверхности выше, чем в других океанах и равна 19’37°. Преобладание осадков над испарением и большой речной сток обусловливают более низкую, чем в других океанах, соленость поверхностных вод, среднее значение которой равно 34,58%о.

Температура и соленость воды на поверхности изменяются и по акватории, и по сезонам. Наиболее заметно по сезонам изменяется температура в западной части океана. Сезонные колебания солености повсеместно невелики. Вертикальные изменения температуры и солености наблюдаются главным образом в верхнем, 200-400-метровом, слое. На больших глубинах они незначительны.

Общая циркуляция в океане складывается из горизонтальных и вертикальных движений вод, которые в той или иной мере прослеживаются от поверхности до дна. Под воздействием крупномасштабной атмосферной циркуляции над океаном поверхностные течения образуют антициклональные круговороты в субтропических и тропических широтах и циклонические круговороты в северных умеренных и южных высоких широтах. Кольцеобразное движение поверхностных вод в северной части океана формируют Северное пассатное, Куросио, Северо-Тихоокеанское теплые течения, Калифорнийское, Курильское холодные и Аляскинское теплое. В систему круговых течений южных районов океана входят теплые Южнопассатные, Восточно-Австралийское, зональное Южно-Тихоокеанское и холодное Перуанское. Кольца течений северного и южного полушарий на протяжении года разделяют Межпассатное течение, проходящее к северу от экватора, в полосе между 2-4° и 8-12° с.ш. Скорости поверхностных течений различны в разных районах океана и изменяются по сезонам. Разные по механизму и интенсивности вертикальные движения вод развиты по всему океану. В поверхностных горизонтах происходит плотностное перемешивание, особенно значительное в районах льдообразования. В зонах схождения поверхностных течений поверхностные воды погружаются, а нижележащие воды поднимаются. Взаимодействие поверхностных течений и вертикальных движений вод — один из важнейших факторов формирования структуры вод и водных масс Тихого океана.

Кроме этих главных природных черт на хозяйственное освоение океана сильно влияют социальные и экономические условия, характеризуемые ЭГП Тихого океана. В отношении тяготеющих к океану пространств суши ЭГП имеет свои отличительные черты. Тихий океан и его моря омывают побережья трех континентов, на которых расположено более 30 прибрежных государств с общим населением около 2 млрд. человек, т.е. здесь проживает примерно половина человечества.

К Тихому океану выходят страны — Россия, Китай, Вьетнам, США, Канада, Япония, Австралия, Колумбия, Эквадор, Перу и др., В каждую из трех основных групп притихоокеанских государств входят страны и их районы с более или менее высоким уровнем развития экономики. Это сказывается на характере и возможностях использования океана.

Протяженность Тихоокеанского побережья России более чем втрое превышает длину береговой линии наших атлантических морей. Кроме того, в отличие от западных дальневосточные морские берега образуют сплошной фронт, что облегчает хозяйственное маневрирование на его отдельных участках. Однако Тихий океан значительно отдален от главных экономических центров и густозаселенных районов страны. Эта удаленность как бы уменьшается в результате развития промышленности и транспорта в восточных районах, но все же она существенно влияет на характер наших связей с этим океаном.

Почти все материковые государства и многие островные, исключая Японию, прилежащие к бассейну Тихого океана, обладают большими запасами разнообразных природных ресурсов, которые интенсивно разрабатываются. Следовательно, источники сырья размещены относительно равномерно по периферии Тихого океана, а центры его переработки и потребления находятся главным образом в северной части океана: в США, Японии, Канаде и в меньшей степени в Австралии. Равномерность распределения природных богатств по побережью океана и приуроченность их потребления к определенным очагам — характерная черта ЭГП Тихого океана.

Материки и частично острова на огромных пространствах отделяют естественными рубежами Тихий океан от других океанов. Лишь к югу от Австралии и Новой Зеландии тихоокеанские воды широким фронтом соединены с водами Индийского океана, а через Магелланов пролив и пролив Дрейка — с водами Атлантического. На севере Тихий океан Беринговым проливом соединен с Северным Ледовитым. В общем, Тихий океан, исключая его приантарктические районы, в сравнительно небольшой части соединяется с другими океанами. Пути, его сообщения с Индийским океаном проходят через австрало-азиатские моря и их проливы, а с Атлантическим — по Панамскому каналу и Магелланову проливу. Узость проливов морей Юго-Восточной Азии, ограниченная пропускная способность Панамского канала, удаленность от крупных мировых центров обширных пространств приантарктических вод снижают транспортные возможности Тихого океана. Это немаловажная черта его ЭГП по отношению к мировым морским путям.

История формирования и развития котловины

Домезозойский этап развития Мирового океана в значительной степени построен на предположениях, и многие вопросы его эволюции остаются неясными. Относительно Тихого океана имеется много косвенных данных, свидетельствующих о том, что палео-Тихий океан существовал с середины докембрия. Он омывал единственный материк Земли — Пангею-1. Считается, что прямым доказательством древности Тихого океана, несмотря на молодость его современной коры (160-180 млн. лет), служит наличие офиолитовых ассоциаций пород в складчатых системах, обнаруженных по всей континентальной периферии океана и имеющих возраст до позднекембрийского. Более или менее достоверно восстановлена история развития океана в мезозойское и кайнозойское время.

Мезозойский этап, по-видимому, сыграл большую роль в эволюции Тихого океана. Главное событие этапа — распад Пангеи-II. В поздней юре (160-140 млн. лет назад) происходило раскрытие молодых Индийского и Атлантического океанов. Разрастание их ложа (спрединг) компенсировалось за счет сокращения площади Тихого океана и постепенного закрытия Тетиса. Древняя океаническая кора Тихого океана погружалась в мантию (субдукция) в зонах Заварицкого-Бениофа, которые окаймляли океан, как и в настоящее время, почти непрерывной полосой. На этом этапе развития Тихого океана происходила перестройка его древних срединно-океанических хребтов.

Образование в позднем мезозое складчатых сооружений северо-востока Азии и Аляски отделило Тихий океан от Северного Ледовитого. На востоке развитие Андийского пояса поглотило островные дуги.

Кайнозойский этап

Тихий океан продолжал сокращаться из-за надвигания на него материков. В результате непрерывного движения Америки на запад и поглощения ложа океана система его срединных хребтов оказалась значительно смещенной к востоку и юго-востоку и даже частично погруженной под континент Северной Америки в районе Калифорнийского залива. Образовались также окраинные моря северо-западной акватории, приобрели современный вид островные дуги этой части океана. На севере при образовании Алеуте кой островной дуги отчленилось Берингово море, раскрылся Берингов пролив, в Тихий океан стали поступать холодные воды Северного Ледовитого. У берегов Антарктиды оформились котловины морей Росса, Беллинсгаузена и Амундсена. Произошло крупное раздробление суши, соединявшей Азию и Австралию, с образованием многочисленных островов и морей Малайского архипелага. Приобрели современный вид окраинные моря и острова переходной зоны к востоку от Австралии. 40-30 млн. лет назад образовался перешеек между обеими Америками, и связь Тихого океана и Атлантического океана в Карибском районе была окончательно прервана.

За последние 1-2 млн. лет размеры Тихого океана сократились очень незначительно.

Основные черты рельефа дна

Как и в других океанах, в Тихом четко выделяются все основные планетарные морфоструктурные зоны: подводные окраины материков, переходные зоны, ложе океана и срединно-океанические хребты. Но общий план рельефа дна, соотношение площадей и расположение указанных зон, несмотря на определенное сходство с другими частями Мирового океана, отличаются большим своеобразием.

Подводные окраины материков занимают около 10% площади Тихого океана, что значительно меньше в сравнении с другими океанами. На материковую отмель (шельф) приходится 5,4%.

Наибольшего развития шельф, как и вся подводная окраина материков, достигает в западном (азиатско-австралийском) приматериковом секторе, в окраинных морях — Беринговом, Охотском, Желтом, Восточно-Китайском, Южно-Китайском, морях Малайского архипелага, а также к северу и востоку от Австралии. Шельф широк в северной части Берингова моря, где есть затопленные речные долины и следы реликтовой ледниковой деятельности. В Охотском море развит погруженный шельф (1000-1500 м глубиной).

Материковый склон — также широкий, с признаками сбросово-глыбового расчленения, прорезан крупными подводными каньонами. Материковое подножие представляет собой узкий шлейф накопления продуктов выноса мутьевых потоков и оползневых масс.

К северу от Австралии располагается обширная материковая отмель с повсеместным развитием коралловых рифов. В западной части Кораллового моря находится уникальное сооружение Земли — Большой Барьерный риф. Это прерывистая полоса коралловых рифов и островов, мелководных заливов и проливов, простирающаяся в меридиональном направлении почти на 2500 км, в северной части ширина — около 2 км, в южной — до 150 км. Общая площадь — более 200 тыс. км2. В основании рифа лежит мощная толща (до 1000-1200 м) мертвого кораллового известняка, накопившегося в условиях медленного погружения земной коры в этом районе. На запад Большой Барьерный риф спускается полого и отделен от материка обширной мелководной лагуной — проливом шириной до 200 км и глубинами не более 50 м. На востоке риф почти отвесной стеной обрывается к материковому склону.

Своеобразную структуру представляет собой подводная окраина Новой Зеландии Новозеландское плато состоит из двух плосковершинных поднятий: Кэмпбелл и Чатем разделенных впадиной. Подводное плато в 10 раз превышает площадь самих островов. Это огромный блок земной коры материкового типа, площадью около 4 млн. км2, не связанный с каким-либо из ближайших Материков. Практически со всех сторон плато ограничено материковым склоном, переходящим в подножие. Эта своеобразная структура, получившая название Новозеландского микроконтинента, существует, по крайней мере, с палеозоя.

Подводная окраина Северной Америки представлена узкой, полосой выровненного шельфа. Материковый склон сильно изрезан многочисленными подводными каньонами.

Своеобразна область подводной окраины, расположенная к западу от Калифорнии и получившая название Калифорнийского бордерленда. Рельеф дна здесь крупноглыбовый, характеризующийся сочетанием подводных возвышенностей — горстов и впадин — грабенов, глубины которых достигают 2500 м. Характер рельефа бордерленда схож с рельефом района прилегающей суши. Считается, что это сильно раздробленная и погруженная на разные глубины часть материковой отмели.

Подводная окраина Центральной и Южной Америки отличается очень узким шельфом шириной всего несколько километров. На большом протяжении роль материкового склона здесь выполняет приконтинентальный борт глубоководных желобов. Материковое подножие практически не выражено.

Значительная часть материковой отмели Антарктиды перекрыта шельфовыми ледниками. Материковый склон здесь выделяется большой шириной и расчлененностью подводными каньонами. Переход к ложу океана характеризуется слабыми проявлениями сейсмичности и современного вулканизма.

Переходные зоны

Эти морфоструктуры в пределах Тихого океана занимают 13,5% его площади. Они исключительно разнообразны по своему строению и выражены наиболее полно по сравнению с другими океанами. Это закономерное сочетание котловин окраинных морей, островных дуг и глубоководных желобов.

В Западно-Тихоокеанском (Азиатско-Австралийском) секторе обычно выделяют целый ряд переходных областей, сменяющих одна другую в основном в субмеридиональном направлении. Каждая из них отличается своим строением, и возможно, они находятся на разных стадиях развития. Сложно построена Индонезийско-Филиппинская область, включающая Южно-Китайское море, моря и островные дуги Малайского архипелага и глубоководные желоба, которые здесь располагаются в несколько рядов. К северо-востоку и востоку от Новой Гвинеи и Австралии находится также сложная Меланезийская область, в которой островные дуги, котловины и желоба расположены в несколько эшелонов. К северу от Соломоновых о-вов есть узкая впадина с глубинами до 4000 м, на восточном продолжении которой расположен желоб Витязя (6150 м). О.К. Леонтьев выделил эту область в особый тип переходной зоны — витязевский. Особенностью этой области является наличие глубоководного желоба, но отсутствие вдоль него островной дуги.

В переходной зоне Американского сектора отсутствуют окраинные моря, нет островных дуг и имеются лишь глубоководные желоба Центральноамериканский (6662 м), Перуанский (6601 м) и Чилийский (8180 м). Островные дуги в этой зоне замещены молодыми складчатыми горами Центральной и Южной Америки, где и сосредоточен активный вулканизм. В желобах же отмечается очень высокая плотность эпицентров землетрясений силой до 7-9 баллов.

Переходные зоны Тихого океана являются районами самого значительного на Земле вертикального расчленения земной коры: превышение Марианских о-вов над днищем одноименного желоба составляет 11 500 м, а Южно-Американских Анд над Перуанско-Чилийским желобом — 14 750 м.

Срединно-океанические хребты (поднятия). Они занимают 11% площади Тихого океана и представлены Южно-Тихоокеанским и Восточно-Тихоокеанским поднятиями. Срединно-океанические хребты Тихого океана по своему строению и расположению отличаются от аналогичных структур Атлантического и Индийского океанов. Они не занимают срединного положения и значительно сдвинуты к востоку и юго-востоку. Такую асимметрию современной оси спрединга в Тихом океане часто объясняют тем, что он находится в стадии постепенно закрывающейся океанической впадины, когда рифтовая ось смещается к одному ее краю.

Строение срединно-океанических поднятий Тихого океана также имеет свои особенности. Эти структуры характеризуются сводообразным профилем, значительной шириной (до 2000 км), прерывистой полосой осевых рифтовых долин при широком участии в формировании рельефа зон поперечных разломов. Субпараллельными трансформными разломами Восточно-Тихоокеанское поднятие рассечено на отдельные блоки, сдвинутые по отношению друг к другу. Все поднятие состоит из серии пологих куполов, при этом центр спрединга приурочен к средней части купола, примерно на равных расстояниях от ограничивающих его с севера и юга разломов. Каждый из этих куполов рассечен также кулисообразно расположенными короткими разломами. Поперечные крупные разломы секут Восточно-Тихоокеанское поднятие через каждые 200—300 км. Протяженность многих трансформных разломов превышает 1500—2000 км. Часто они не только пересекают фланговые зоны поднятия, но и выходят далеко на ложе океана. Среди крупнейших структур такого типа — Мендосино, Меррей, Кларион, Клипертон, Галапагосский, Пасхи, Элтанин и др. Большая плотность земной коры под гребнем, высокие значения теплового потока, сейсмичность, вулканизм и ряд других проявляются весьма ярко, несмотря на то, что рифтовая система осевой зоны срединно-океанических поднятий Тихого океана выражена слабее, чем в Срединно-Атлантическом и других хребтах этого типа.

Севернее экватора Восточно-Тихоокеанское поднятие суживается. Здесь четко выражена рифтовая зона. В районе Калифорнии эта структура вторгается на материк Северной Америки. С этим связывают откол Калифорнийского п-ова, образование крупного активного разлома Сан-Андреас и ряда других разломов и депрессий в пределах Кордильер. С этим же, вероятно, связано и образование Калифорнийского бордерленда.

Абсолютные отметки рельефа дна в осевой части Восточно-Тихоокеанского поднятия повсеместно около 2500-3000 м, но на отдельных возвышенностях они уменьшаются до 1000-1500 м. Подножие склонов отчетливо трассируется по изобате 4000 м, а глубины дна в обрамляющих котловинах достигают 5000-6000 м. На наиболее высоких участках поднятия находятся о. Пасхи и Галапагосские о-ва. Таким образом, амплитуда воздымания над окружающими котловинами в целом весьма велика.

Южно-Тихоокеанское поднятие, отделенное от Восточно-Тихоокеанского разломом Элтанин, очень схоже с ним по своему строению. Протяженность Восточного поднятия — 7600 км, Южного — 4100 км.

Ложе океана

Оно занимает 65,5% общей площади Тихого океана. Срединно-океанические поднятия делят его на две части, различающиеся не только своими размерами, но и особенностями рельефа дна. Восточная (точнее, юго-восточная) часть, занимающая 1/5 часть ложа океана, более мелководна и менее сложно построена в сравнении с обширной западной частью.

Большая доля восточного сектора занята морфоструктурами, имеющими непосредственную связь с Восточно-Тихоокеанским поднятием. Здесь находятся его боковые ответвления — Галапагосское и Чилийское поднятия. Крупные глыбовые хребты Теуантепек, Кокосовый, Карнеги, Носка, Сала-и-Гомес приурочены к зонам трансформных разломов, секущих Восточно-Тихоокеанское поднятие. Подводные хребты делят восточную часть океанского ложа на ряд котловин: Гватемальскую (4199 м), Панамскую (4233 м), Перуанскую (5660 м), Чилийскую (5021 м). В крайней юго-восточной части океана расположена котловина Беллинсгаузена (6063 м).

Обширная западная часть ложа Тихого океана характеризуется значительной сложностью строения и разнообразием форм рельефа. Здесь расположены практически все морфологические типы подводных поднятий ложа: сводовые валы, глыбовые горы, вулканические хребты, окраинные поднятия, отдельные горы (гайоты).

Сводовые поднятия дна представляют собой широкие (несколько сотен километров) линейно ориентированные вздутия базальтовой коры с превышением над прилегающими котловинами от 1,5 до 4 км. Каждое из них — как бы гигантский вал, рассеченный разломами на ряд блоков. Обычно к центральным сводовым, а иногда к фланговым зонам этих поднятий приурочены вулканы и целые вулканические хребты. Так, наиболее крупный Гавайский вал осложнен вулканическим хребтом, часть вулканов — действующие. Надводные вершины хребта образуют Гавайские о-ва. Самый большой — о. Гавайи представляет собой вулканический массив из нескольких слившихся щитовых базальтовых вулканов. Крупнейший из них — Мауна-Кеа (4210 м) делает Гавайи самым высоким из океанических островов Мирового океана. В северо-западном направлении размер и высота островов архипелага уменьшаются. Большая часть островов — вулканические, 1/3 — коралловые.

Наиболее значительные валы и хребты западной и центральной частей Тихого океана имеют общую закономерность: они образуют систему дугообразных, субпараллельных в плане поднятий.

Самую северную дугу образует Гавайский хребет. Южнее расположена следующая, самая крупная по протяженности (примерно 11 тыс. км), начинающаяся горами Картографов, которые затем переходят в горы Маркус-Неккер (Мидпасифик), сменяющиеся подводным хребтом о-вов Лайн и далее переходящие в основание о-вов Туамоту. Подводное продолжение этой возвышенности прослеживается далее на восток вплоть до Восточно-Тихоокеанского поднятия, где в месте их пересечения располагается о. Пасхи. Третья горная дуга начинается у северной части Марианского желоба горами Магеллана, которые переходят в подводное основание Маршалловых о-вов, о-вов Гилберта, Тувалу, Самоа. Вероятно, гряда южных о-вов Кука и Тубу а и продолжает эту горную систему. Четвертая дуга начинается поднятием Северных Каролинских о-вов, переходящих в подводный вал Капингамаранги. Последняя (самая южная) дуга состоит также из двух звеньев — Южных Каролинских о-вов и подводного вала Эауриапик. Большинство упомянутых островов, которые маркируют на поверхности океана сводовые подводные валы, — коралловые, за исключением вулканических островов восточной части Гавайского хребта, о-вов Самоа и др. Существует представление (Г. Менард, 1966), что многие подводные поднятия центральной части Тихого океана — реликты существовавшего здесь в меловом периоде срединно-океанического хребта (названного поднятием Дарвина), который в палеогене подвергся сильнейшему тектоническому разрушению. Это поднятие простиралось от гор Картографов до о-вов Туамоту. 

Глыбовым хребтам часто сопутствуют разломы, не связанные со срединно-океаническими поднятиями. В северной части океана они приурочены к субмеридиональным зонам разломов к югу от Алеутского желоба, вдоль которого располагается Северо-Западный хребет (Императорский). Глыбовые хребты сопровождают крупную зону разломов в котловине Филиппинского моря. Системы разломов и глыбовых хребтов выявлены во многих котловинах Тихого океана.

Различные поднятия ложа Тихого океана вместе со срединно-океаническими хребтами образуют своеобразный орографический каркас дна и отделяют друг от друга океанические котловины.

Крупнейшими в западно-центральной части океана являются котловины: Северо-Западная (6671 м), Северо-Восточная (7168 м), Филиппинская (7759 м), Восточно-Марианская (6440 м), Центральная (6478 м), Западно-Каролинская (5798 м), Восточно-Каролинская (6920 м), Меланезийская (5340 м), Южно-Фиджийская (5545 м), Южная (6600 м) и др. Днища котловин Тихого океана отличаются малой мощностью донных отложений, в связи с чем плоские абиссальные равнины распространены очень ограниченно (котловина Беллинсгаузена в связи с обильным поступлением терригенного осадочного материала, выносимого с Антарктического материка айсбергами, Северо-Восточная котловина и ряд других районов). Снос материала в другие котловины «перехватывается» глубоководными желобами, и поэтому в них преобладает рельеф холмистых абиссальных равнин.

Для ложа Тихого океана характерны отдельно расположенные гайоты — подводные горы с плоскими вершинами, на глубинах 2000—2500 м. На многих из них возникли коралловые постройки и образовались атоллы. Гайоты, как и большая мощность мертвых коралловых известняков на атоллах, свидетельствуют о значительных погружениях земной коры в пределах ложа Тихого океана в течение кайнозоя.

Тихий океан — единственный, ложе которого почти полностью находится в пределах океанических литосферных плит (Тихоокеанской и малых — Наска, Кокос) с поверхностью на глубине в среднем 5500 м.

Донные осадки

Донные отложения Тихого океана исключительно разнообразны. В окраинных частях океана на материковом шельфе и склоне, в краевых морях и глубоководных желобах, а местами и на океанском ложе развиты терригенные осадки. Они покрывают более 10% площади дна Тихого океана. Терригенные айсберговые отложения образуют полосу у Антарктиды шириной от 200 до 1000 км, достигая 60° ю. ш.

Среди биогенных осадков наибольшие площади в Тихом океане, как и во всех других, занимают карбонатные (около 38%), в основном фораминиферовые отложения.

Фораминиферовые илы распространены главным образом к югу от экватора до 60° ю. ш. В Северном полушарии их развитие ограничивается вершинными поверхностями хребтов и прочих поднятий, где в составе этих илов преобладают донные фораминиферы. Птероподовые отложения распространены в Коралловом море. Коралловые осадки располагаются на шельфах и материковых склонах в пределах экваториально-тропического пояса юго-западной части океана и занимают менее 1% площади дна океана. Ракушечные, состоящие в основном из раковин двустворчатых моллюсков и их обломков, встречаются на всех шельфах, кроме антарктического. Биогенные кремнистые осадки покрывают более 10% площади дна Тихого океана, а вместе с кремнисто-карбонатными — около 17%. Они образуют три основных пояса кремненакопления: северный и южный кремнистых диатомовых илов (в высоких широтах) и экваториальный пояс кремнистых радиоляриевых осадков. В районах современного и четвертичного вулканизма наблюдаются пирокластические вулканогенные осадки. Важная отличительная особенность донных отложений Тихого океана — широкое распространение глубоководных красных глин (более 35% площади дна), что объясняется большими глубинами океана: красные глины развиты только на глубинах более 4500-5000 м.

Минеральные ресурсы дна

В Тихом океане находятся самые значительные площади распространения железомарганцевых конкреций — более 16 млн. км2. В отдельных районах содержание конкреций достигает 79 кг на 1 м2 (в среднем 7,3—7,8 кг/м2). Специалисты предрекают этим рудам блестящее будущее, утверждая, что массовая их добыча может быть в 5—10 раз дешевле получения подобных руд на суше.

Общие запасы железомарганцевых конкреций на дне Тихого океана оцениваются в 17 тыс. млрд. тонн. Опытно-промышленную разработку конкреций ведут США и Япония.

Из других полезных ископаемых в форме конкреций выделяются фосфоритовые и баритовые.

Промышленные запасы фосфоритов найдены близ Калифорнийского побережья, в шельфовых частях Японской островной дуги, у берегов Перу и Чили, вблизи Новой Зеландии, в Калифорнии. Фосфориты добывают с глубин 80—350 м. Велики запасы этого сырья в открытой части Тихого океана в пределах подводных поднятий. Баритовые конкреции обнаружены в Японском море.

Важное значение в настоящее время имеют россыпные месторождения металлоносных минералов: рутила (титановая руда), циркона (циркониевая руда), монацита (ториевая руда) и др.

Ведущее место в их добыче занимает Австралия, вдоль ее восточного побережья россыпи тянутся на 1,5 тыс. км. Прибрежно-морские россыпи касситеритового концентрата (оловянная руда) располагаются на тихоокеанском побережье материковой и островной Юго-Восточной Азии. Значительны россыпи касситерита у берегов Австралии.

Титаномагнетитовые и магнетитовые россыпи разрабатываются у о. Хонсю в Японии, в Индонезии, на Филиппинах, в США (вблизи Аляски), в России (у о. Итуруп). Золотоносные пески известны у западного побережья Северной Америки (Аляска, Калифорния) и Южной Америки (Чили). Платиновые пески добывают у берегов Аляски.

В восточной части Тихого океана вблизи Галапагосских о-вов в Калифорнийском заливе и в других местах в рифтовых зонах выявлены рудообразующие гидротермы («черные курильщики»)— выходы горячих (до 300—400°С) ювенильных вод с большим содержанием соединений различных металлов. Здесь идет образование месторождений полиметаллических руд.

Среди нерудного сырья, расположенного в шельфовой зоне, представляют интерес глауконит, пирит, доломит, строительные материалы — гравий, песок, глины, известняк-ракушечник и др. Наибольшее значение имеют морские месторождения нефти, газа и каменного угля.

Нефтегазопроявления обнаружены во многих районах шельфовой зоны как в западной, так и в восточной частях Тихого океана. Добычу нефти и газа ведут США, Япония, Индонезия, Перу, Чили, Бруней, Папуа, Австралия, Новая Зеландия, Россия (в районе о. Сахалин). Перспективно освоение нефтегазовых ресурсов шельфа Китая. Перспективными для России считают Берингово, Охотское и Японское моря.

В некоторых районах шельфа Тихого океана залегают угленосные пласты. Добыча каменного угля из недр морского дна составляет в Японии 40% от общей. В меньших масштабах уголь добывают морским способом Австралия, Новая Зеландия, Чили и некоторые другие страны.

Источник: www.polnaja-jenciklopedija.ru


Categories: Океан

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.